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Rods may experience substantially greater loads under shock loading (without losing 
stability) than under static loading, depending on the loading time. Evaluating stability 
during shock loading involves selection of a stability criterion which is a function of the 
operating regime of the structure and manufacturing tolerances. 

Aspects of the stability of rods under shock loading were examined in [1-7]. 

It should be noted that numerical solutions of problems on loss of stability under 
shock loading [2, 3] runs into a difficulty with can be circumvented theoretically but which 
is always present in the design of actual structures. This problem has to do with fixing 
the initial deviations of the rod, although the actual initial deviation is a random vari- 
able which in practice can only be assigned within a certain range -- the manufacturing tole- 
rance. 

This problem has also not been solved in studies using analytical methods. The investi- 
gations [I, 6, 7] do not report any dependence of the critical forces on manufacturing tole- 
rances. 

The present study evaluates the lower bounds for the critical force in shock loading for 
a certain special formulation. Here, although the initial deflection of the rod is a random 
variable and the critical force should be of a statistical character, it turns out that it is 
possible to obtain a deterministic evaluation for the minimum critical force. 

I. We will examine the problem of the stability of a hinged rod of length I compressed 
by an impulsive load which is constant up to a certain time to and is then removed. 

The rod has the initial deflection U(x). It is assumed that the load No exceeds the 
critical Eulerian load and that the time to is significantly greater than the time of propa- 
gation of longitudinal waves in the rod. 

With such a formulation, the problem reduces to examining a well-known equation for 
transverse vibrations of a rod 

E J W x x x  x + p S W , t t  + N W  .. . .  + NU.x  x = O, (i.i) 

0 < x <  l, 0 < t < ~ ;  

W =  O, W, t = O, t =  O; ( 1 . 2 )  

W =  O, W,x x =  O, z =  O, x =  I; 
(1.3) 

I I N o ,  0 < t < t0~ 

N =  [0, t o < t < o o  , (]_.4) 

where U(x) is a random function describing the initial deviation of the rod fromrectilinearity 
(due to the manufacturing technology), on which we impose the limitation 

Iu(x)i < %, ~0 > 0. (I. 5) 

The value of so, determining the manufacturing tolerance for the product, is assigned. In 
Eq. (i.i), E, J, @, and S are the elastic modulus, moment of inertia, density of the materi- 
al, and cross sectional area of the rod, respectively. 

In changing over to dimensionless variables and parameters, with allowance for condi- 
tions (1.2)-(1.4) we represent Eq. (i.i) in the form 

W ~ +  a2W,~ + b 2 W ~ +  b2 = O, 0 < ~ <  t, 0 < ~ <  ~ ;  , .  u ~  (1 .6 )  
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W =  W.~=O, ~ = 0 ;  W =  W, g t =  O, g =  O, $ =  1; 

= x / l ,  ~ = tE1/~l-lp-1/2, a 2 = sl2d-1; ( 1 . 7 )  

(~1~ ~, 0 < ~ <~o' 
b ~ 

tO ' ~ o < , <  ~ ' (1.8) 

~1 : "  N o / A t  e, "~o : toE1/21-1P -l'r~, 

where N e = ~=;-=EJ is the critical Eulerian load. As one possible criterion of stability we 

take a criterion connected with the limitation on the lateral displacement Of the rod: 

max IW(U ,  T, ~l)l <~ Wo, IU(x)I < eo, 0 < ~ < o% 

Wo>>~o > O. 

Here, a value of ~ for which the absolute inequality is satisfied is taken as a suberitical 

value, while a value of n* for which the equality is satisfied is a critical value. 

2. With expansion of the function U(x) into a Fourier series in functions sin kT~ on 

the interval 0 < ~ < 1 

I 

U = ~ C h sin k ~ ,  C h = 2 ~ U (~) sin/,'u~d~. ( 2 . 1 )  
1 o 

We obtain the following estimate from (1.5) and (2.1) for the coefficients Ck, which are ran- 

dom variables 

I 

I Oh I ~<2 S I U (.~) I [ sin kr@t d~ ~ 2%. ( 2 . 2 )  
0 

We seek a solution of Eq. (1.6) in the form of a series 

W = ~ CkT~ (~) sin ~m~; ( 2 . 3 )  
1 

Tk(0 ) ---- Th,~(0) = 0. ( 2 . 4 )  

Initial and boundary conditions (1.7) are satisfied when (2.3) and (2.4) are chosen for the 

form of the solution. 

With insertion of (2.3) into Eq. (1.6), for each function Tk@) there is the equation 

Th, z~ -~ (1,';t)2a -~ [(ka) ~ --  b 2] T k --  (ka)~b2a-2 = O. ( 2 . 5 )  

It follows from analysis of Eq. (2.5) that with a fixed value of No there is a finite 

number of values of k ~ mo when the following condition is satisfied 

• (ks) = -- b 2 < 0, (2.6) 

which is satisfied by the quantity 

,,o = ~V-~1. ( 2 . 7 )  

Condition (2.6) means that, besides vibrations corresponding to a > 0, there is motion with 
an exponential increase in amplitude at 1 < k < mo. This motion is mainly responsible for 

the curvature of the rod, i.e., in the displacement 

m0 

W = i ChTh ('c) sin k~$ -~ ~ ChT h (~) sin ka~ + s ChT h ('~) sin ka~ 
k : l  h=l m 0 + l  

we can ignore the second sum, which is small compared to the first, having terms which in- 

crease without limit: 

m 0 

W ~ ,  Ch~ (~) sin kaY. ( 2 . 8 )  
h = l  

Such a division of the displacements is characteristic of studies of stability under 
shock loading [i, 6, 7]. Some of the investigations, moreover, isolate and retain only cer- 

tain basic terms of the sum (2.8). 

We will seek the solution of Eq. (2.5), with initial conditions (2.4), in the class of 
continuous functions having continuous first derivatives. This means that there will be no 
sudden changes in the displacement and rate of displacement. With allowance for this and 
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the discontinuity of the function b(T), the solution of (2.5) for k < mo has the form 

T~ ('0 = --  bha~ ~" [t - -  ch %~1, 0 <~ "~ ~< -c o, 

Tk(~) = --A1 cos ch'~ - -  A2 sin ch'~, % < T < oo, 

a h - -  k,Ta - 1  [b 2 - -  (kn)'2]l/~ b h = ( h , a )  "9 b2a - 2 ,  c h : -  k2a~a-1 ' 

A a = bka~-gt[t -- ch ah'Co] cos ehr o -+- bhah le '~ l  sh ah* o sin :h'ro, 

A z = bl~a-~ ~ [i --  ch ah,o] sin eh'~o - -  b~a~Xc'~ 1 sh %~c o cos c~, o. 

Here, for the functions Tk(T) we obtain the estimate 

2bha~2[cha~T o - - t ]  + 2 b h a ~ l c ~ l s h a k T  O. 
( 2 . 9 )  

The function Fk(To , ~, a), as a function of the parameter n, is monotonically increasing be- 
cause there is a monotonic increase in the factor 

b~ ('1), a ~  [ch % % - -  t1, a~ l sh  %%, 

while when n = i, F k = 0. 

With allowance for inequalities (2.2) and (2.9), we find the following estimate for 

the main solution (2,8) 
rN 0 

max t W ( U , r , q )  l % 2 e  o .~F~ ( q ) , I U i ~ e o ,  0 < ~ < ~ .  ( 2 . 1 0 )  
1 

m 0 

The function ~ fh(q)  is also monotonically increasing when q > 1 and is equal to zero when 

n = i. Considering this and inequality (2.10), as a lower bound for the critical force we 
can take the solution ~.~ of the following equation 

o = : % / % .  ( 2 . 1 1 )  y ,  . .  

Equation (2.11) always has a solution at n > 1 by virtue of the above-mentioned properties 
of the left side of Eq. (2.11). This solution is actually the lower bound for the critical 
force. 

o 
In fact, for all ~ < ~ = N,/Ne, by virtue of the monotonic increase F(n) < Wo/~o. 

Then, with allowance for inequality (2.10) 

max [W(U, r, ~)[ ~ Wo, [U[ ~ ~o, 0 < �9 < ~ ,  

and by definition these values of ~ are subcritical, i.e., the critical force n, does not 
fall within the interval 1 ~ D ~ ~. This means that ~. > E~. 

Equation (2.11) was used to construct the dependence of the lower bound for the critical 
force ~ = N$/Ne, shown in Fig. i, on the dimensionless time of action of the pulse ~o for 
different values of the parameters ~, u = Wo/so. Curves 1--6 correspond to ~ = i00, I00, 50, 
50, 50, 50; ~ = 400, 200, 400, 200, i00, 20. 
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It is evident from the figure that with a sufficiently long time of action of the pulse 
O o To, ~, § i. With short times, the value of ~, is considerably greater than unity, i.e., the 

estimate obtained is not trivial, coincident with the critical force under static loading N e. 
Rather, it is significantly greater than this force, which makes it possible to obtain a sub- 
stantially higher permissible compressive force during shock loading than under static load- 
ing. Consequently, the structure can withstand larger loads than originally believed. A 
determination should be made of the boundaries of the parameters which, when approached, sig- 
nify that the results obtained here have become unreliable. 

At T, < 2-3, the results may prove unreliable due to failure to account for the finite 
rate of propagation of the compressive force in the rod. 

When Wo/so < i0, the results become unreliable due to representation (2.8) and the 
fact that the remaining part of the sum was ignored. On the other hand, with large values 
of Wo the results become unreliable because we examined a linear equation of rod bending. 
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METHODS OF SOLVING CONTACT THERMOELASTICITY PROBLEMS WITH ALLOWANCE 

FOR THE WEAR OF INTERACTING SURFACES 

V. M. Aleksandrov and E. V. Kovalenko UDC 539.375.6:539.377 

i. Assume that a heavy cylindrical stamp is pressed into a rough, elastic (G, ~) layer 
with a large thickness, h. A force P, which is constant in time, is applied with the eccen- 
tricity e for each unit length of the stamp. The stamp moves at a constant velocity V along 
its generatrix; it is assumed that its area of contact with the layer has the width 2a(ha -I >> 
I) and does not change in the course of time (see Fig. i). This involves wear of the layer 
surface, which is accompanied by heat release in the region of contact. We assume that the 
stamp itself is not subject to wear. Coulomb friction forces arise in the region of contact 

[1, 2], 
�9 y~ = (h + hT)q, (I. i) 

where kl and k2 are constants, T is the temperature in the region of contact, and q = q(x, t) 

is the contact pressure. 

The condition of contact for solids 1 and 2 is written as follows: 

vl + 92 + 93 = --[5(t) + a(t)x --i(z)] (Ix I ~ a), (1.2) 

where vl is the displacement of the elastic layer's upper boundary due to the crushing of 
roughnesses, v2 is the elastic deformation of the layer's surface, v3 is the displacement of 
the y = 0 boundary of the layer due to its wear, 5(t) + ~(t)x is the rigid displacement of 
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